On the Need for Digital Phenotyping to Obtain Insights into Mental States in the COVID-19 Pandemic

Christian Montag1*, Paul Dagum2 & Jon D. Elhai3,4

1 Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
2 Applied Cognition, Los Altos, CA, USA
3 Department of Psychology, University of Toledo, Toledo, OH, USA
4 Department of Psychiatry, University of Toledo, Toledo, OH, USA

Coronavirus Disease 2019 (COVID-19) has caused a worldwide pandemic. Respiratory failure is among the most common causes of death related to COVID-19 (Mehta et al., 2020). Beyond the current debate on developing vaccines and appropriate treatments for COVID-19 (Lurie et al., 2020; Matthay et al., 2020), discussions have emerged on how the pandemic can be successfully controlled by technological means (Mayor, 2020; McCall, 2020). Beyond the widespread recommendations to control the virus by washing hands regularly, wearing respiratory masks, and practicing social distancing (perhaps more appropriately called physical distancing because it is also possible to socially interact virtually; for effects of travel restrictions see (Matthay et al., 2020)), there is interest in using mobile phone data to better understand how COVID-19 spreads in a given population (Oliver et al., 2020).

Various tracking technologies have been proposed, with different levels of privacy issues (Cho et al., 2020; Ienca & Vayena, 2020). Perhaps the least invasive method to track the spread of COVID-19 uses Bluetooth technology, where one's smartphone logs the identity of other smartphone users with whom the person interacted for specific periods of time (Abeler et al., 2020). The data are stored on the smartphone and are only transferred to a server if the user decides to share this information, for example if they learn that they have been infected. This approach is expected to be effective only if a minimum of 60% of a population install such an application (Hurtz, 2020). Current statistics from countries such as Austria (3%) and Singapore (20%) show that typically the minimum threshold is not reached (Rosenbach et al., 2020), perhaps due to privacy concerns.

Beyond the question of whether smartphone-tracking procedures can adequately minimize the spread of COVID-19 in a population, use of smartphone tracking might have additional benefits in the context of a pandemic. The data derived from smartphones can be used to obtain insights on changes in psychological variables, such as the current mental state of a person, that are induced by a pandemic (Baumeister & Montag, 2019; Dagum, 2018). For instance, smartphone call behavior is robustly associated with extraversion (Montag et al., 2020). Detecting psychological states and traits from digital traces logged on smartphones and other connected devices is called digital phenotyping (Insel, 2017, 2018). It has shown promise in longitudinally assessing affective states (Messner et al., 2019; Zulueta et al., 2018), including providing insights into affective disorders such as major depression (Saeb et al., 2015, 2017). In principle, app tracking technologies could be used to track the spread of COVID-19 and further assess its adverse effects. For example, such tracking could be used to assess the increase of mental disorders that are a consequence of the effects of the COVID-19 pandemic. This includes the effects of loneliness and social isolation (Armitage & Nellums, 2020), and concerns about job losses and related financial duress (Coibion et al., 2020). At the moment it is difficult to obtain insights into the potential rise of mental disorders related to COVID-19. Social distancing prevents many people from obtaining access to mental health professionals. Digital phenotyping via smartphone tracking tech-
nologies could help reveal those who may benefit from access to health support and services.

Insight into population mental health in the COVID-19 pandemic is relevant to policy makers whose decisions on restricting social interactions, closing economic sectors, and imposing self-quarantine measures, need to reflect the indirect societal costs and health implications of depression and addiction. In this domain, Schimmenti et al. identified four areas, which might be among the causal factors for psychiatric disorders triggered by COVID-19. Here, the authors discuss the components: “(1) fear of the body/face for the body, (2) fear of significant others/fear for significant others, (3) fear of not knowing/face of knowing, and (4) fear of taking action/face of inaction” (Schimmenti et al., 2020, p. 41).

The negative psychological impact of COVID-19, including adverse effects directly attributable to COVID-19 itself, and also indirect effects due to isolation or heightened anxiety/fear from constant media coverage, has already received empirical support in the literature. A nationwide survey from China reported that approximately 35% of the investigated population showed signs of significant psychological distress (Qiu et al., 2020). In Iran it has been reported that fear of COVID-19 correlates with elevated depression and anxiety symptoms (Ahorsu et al., 2020), and in Bangladesh the first case of suicide (of a 36 year old man) due to fear of infection by COVID-19 has been recorded (Mamun et al., 2020). COVID-19 could result in a higher risk of increased alcohol use disorders over time (Clay & Parker, 2020). In March 2020, Germans bought 12% more beer and 31% more high alcohol-content drinks compared to the same period the year before (Bartel, 2020). Such elevated alcohol consumption could be a consequence of isolation and/or fear of COVID-19. A recent paper also discussed the potential negative consequences of COVID-19 in the area of problematic Internet use, in the context of prolonged screen time sessions that are a result of governmental requests to stay at home (Kirilky et al., 2020).

We need to pay greater attention to the negative mental health and social implications of the COVID-19 crisis and related policies. Population scale digital phenotyping can provide important insights on changes in population mental health and the impact of government policy. We must balance this potential benefit with ethical issues arising from the use of tracking technologies, perhaps the most problematic being privacy violations in the age of surveillance capitalism (Dagum & Montag, 2019). Technologies could help reveal those who may benefit from access to health support and services.


References
prehensive Psychiatry, 100, 152180. https://doi.org/10.1016/j.comp
psych.2020.152180

Covid-19 Vaccines at Pandemic Speed. New England Journal of Med-

in Bangladesh due to fear of COVID-19 and xenophobia: Possible
https://doi.org/10.1016/j.ajp.2020.102073

Data mining for health: Staking out the ethical territory of dig-
tal phenotyping. Npj Digital Medicine, 68. https://doi.org/10.1038/s41746-018-0075-8

Matthay, M. A., Aldrich, J. M., & Gotts, J. E. (2020). Treatment for severe
acute respiratory distress syndrome from COVID-19. The Lancet
Respiratory Medicine, 8(5), 433–434. https://doi.org/10.1016/S2213-
2600(20)30127-2

Mayor, S. (2020). Covid-19: Researchers launch app to track spread of
symptoms in the UK. BMJ, 368. https://doi.org/10.1136/bmj.m1263

health-care workers and curbing the spread. The Lancet
(20)30054-6

Mehta, P., McCauley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., &
Manson, J. J. (2020). COVID-19: Consider cytokine storm syn-
dromes and immunosuppression. The Lancet, 395(10229), 1033–
1034. https://doi.org/10.1016/S0140-6736(20)30628-0

Messner, E.-M., Sariyska, R., Mayer, B., Montag, C., Kannen, C.,
cations of Passive Smartphone Sensing in the Therapeutic Context.
Verhaltenstherapie. https://doi.org/10.1159/000501951

Montag, C., Baumeister, H., Kannen, C., Sariyska, R., Meßner, E.-M., &
New Smartphone Application for the Social and Life Sciences to
Study Human Behavior Including Validation Data from Personal-
https://doi.org/10.3390/j20200008

Montag, C., Blaszkiewicz, K., Lachmann, B., Andone, I., Sariyska, R.,
Trendafilov, B., Reuter, M., & Markowitz, A. (2014). Correlating Per-
sonality and Actual Phone Usage. Journal of Individual Differences,
35(3), 158–165. https://doi.org/10.1027/1614-0001/a000139

Montag, C., Sindermann, C., & Baumeister, H. (2020). Digital phen-
typing in psychological and medical sciences: A reflection about nec-
essary prerequisites to reduce harm and increase benefits. Current
2020.03.013

Oliver, N., Letouzé, E., Sterly, H., Delattale, S., De Nadai, M., Lepri, B.,
Lambiotte, R., Benjamins, R., Cattuto, C., Colizza, V., de Cordes,
N., Fraiberger, S. P., Koebe, T., Lehmann, S., Murilla, J., Pentland,
phone data and COVID-19: Missing an opportunity? ArX-

wide survey of psychological distress among Chinese people in the
General Psychiatry, 33(2), e100213. https://doi.org/10.1136/gpsych-
2020-100213

Rosenbach, M., Rosenfelder, L., Schmergal, C., Schmundt, H., & Wied-

Phone Detection of Semantic Location and Its Relationship to
Depression and Anxiety. JMIR MHealth and UHealth, 5(8), e112.
https://doi.org/10.2196/mhealth.7297

Saeb, S., Zhang, M., Karr, C. J., Schueller, S. M., Corden, M. E., Kording,
K. P., & Mohr, D. C. (2015). Mobile Phone Sensor Correlates of De-
pressive Symptom Severity in Daily-Life Behavior: An Exploratory
Study. Journal of Medical Internet Research, 17(7), e175. https://doi.
org/10.2196/jmir.4273

Schimmenti, A., Billieux, J., & Starcevic, V. (2020). The four horsemen of
fear: An integrated model of understanding fear experiences during

Human Future at the New Frontier of Power: Barack Obama’s Books of

Zulutu, J., Piscitello, A., Rasic, M., Easter, R., Babu, P., Langenecker,
S. A., McInnis, M., Ajilore, O., Nelson, P. C., Ryan, K., & Leow, A.
(2018). Predicting Mood Disturbance Severity with Mobile Phone
Keystroke Metadata: A BiAffect Digital Phenotyping Study. Journal
of Medical Internet Research, 20(7), e241. https://doi.org/10.2196/jmir.
9775

*Corresponding author

Prof. Dr. Christian Montag
Institute for Psychology and Education
Helmholtzstr. 8/1
Ulm University
89081 Ulm, Germany
Tel.: +49-731-50-26550
Fax: +49-731-30 32759
E-Mail: christian.montag@uni-ulm.de

Conflict of Interest

None. Nevertheless, for reasons of transparency, it is mentioned that
Christian Montag is currently funded by Mindstrong Health to carry
out a project on digital phenotyping and mental disorders. Paul Dagum
is the founder of Mindstrong Health and owns stock in Mindstrong
Health, a company focusing on digital phenotyping. Outside the scope
of the present paper, Dr. Elhai notes that he receives royalties for several
books published on posttraumatic stress disorder (PTSD); is a paid, full-
time faculty member at University of Toledo; is a paid, visiting scientist
at Tianjin Normal University; occasionally serves as a paid expert wit-
tness on PTSD legal cases; and receives grant research funding from the
U.S. National Institutes of Health.

Funding

None.